A Carlitz Module Analogue of a Conjecture of Erdős and Pomerance
نویسنده
چکیده
Let A = Fq [T ] be the ring of polynomials over the finite field Fq and 0 = a ∈ A. Let C be the A-Carlitz module. For a monic polynomial m ∈ A, let C(A/mA) and ā be the reductions of C and a modulo mA respectively. Let fa(m) be the monic generator of the ideal {f ∈ A,Cf (ā) = 0̄} on C(A/mA). We denote by ω(fa(m)) the number of distinct monic irreducible factors of fa(m). If q = 2 or q = 2 and a = 1, T , or (1 + T ), we prove that there exists a normal distribution for the quantity ω(fa(m))− 12 (log degm) 2 1 √ 3 (log degm)3/2 . This result is analogous to an open conjecture of Erdős and Pomerance concerning the distribution of the number of distinct prime divisors of the multiplicative order of b modulo n, where b is an integer with |b| > 1, and n a positive integer.
منابع مشابه
An Erdős–fuchs Type Theorem for Finite Groups
We establish a finite analogue of the Erdős-Fuchs theorem, showing that the representation function of a non-trivial subset of a finite abelian group cannot be nearly constant. Our results are, essentially, best possible. – Dedicated to Melvyn B. Nathanson and Carl Pomerance on the occasion of their 65th birthday
متن کاملDo the symmetric functions have a function-field analogue?
2. The Carlitz-Witt suite 5 2.1. The classical ghost-Witt equivalence theorem . . . . . . . . . . . . . 5 2.2. Classical Witt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3. The Carlitz ghost-Witt equivalence theorem . . . . . . . . . . . . . . 9 2.4. Carlitz-Witt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5. F -modules . . . . . . . . . . . . . . ...
متن کاملThe Auslander-Reiten Conjecture for Group Rings
This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...
متن کاملPreprint (2005-05-25), arXiv:math.CO/0505548. ON q-EULER NUMBERS, q-SALIÉ NUMBERS AND q-CARLITZ NUMBERS
for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q), this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerate of C2n(q), this extends Carlitz’s result that 2 divides the Salié number S2n and the numerate of the Carlitz number C2n. For q-Salié numbers we also confirm a conjecture of ...
متن کاملActa Arith. 124(2006), no. 1, 41–57. ON q-EULER NUMBERS, q-SALIÉ NUMBERS AND q-CARLITZ NUMBERS
for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q); this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerator of C2n(q); this extends Carlitz’s result that 2 divides the Salié number S2n and the numerator of the Carlitz number C2n. Our result on q-Salié numbers implies a conjecture...
متن کامل